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Scientific and Technical Objectives

This MURI project develops a SMartVISION general-purpose, autonomous neural
system for vision, object recognition, and tracking applications, to explain how the brain
sees, and to transfer new computer vision architectures into technology. SMartVISION
predictions have been successfully tested in psychophysics and neurobiology labs.
SMartVISION embodies a revolutionary paradigm shift in intelligent computation. It is
designed to operate in real-time within noisy environments for which rules are not
known, and which contain rare but important events, unexpected events, incomplete
data, irregular statistical drifts, and different amounts of morphological variability in
objects to be detected and recognized. A companion architecture for distributed
planning, decision, and action helps to actively acquire information by interacting with
the SMartVISION system, including circuits to control attention shifts and eye
movements to fixate regions of interest. SMartVISION is quantitatively simulating the
dynamics of identified nerve cells, in known anatomical circuits, and the emergent
behaviors that they control. It embodies qualitatively new computational paradigms with
novel concepts and mechanisms for intelligent computing in response to a rapidly
changing world, notably the paradigms of Laminar Computing and of Complementary
Computing. These concepts and mechanisms have begun to break through old barriers
in technology.
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Approach
Senior faculty coordinate small teams of faculty/student researchers on projects to
develop the unified SMartVISION system. Biological modeling projects discover
fundamental organizational principles and mechanisms that enable the brain to adapt in
real-time to unexpected environmental challenges, translate them into mathematical
models, and use the models to quantitatively simulate large brain and behavioral data
bases about vision, object recognition, and tracking. These models have introduced two
revolutionary new paradigms into intelligent computing, Laminar Computing and
Complementary Computing, whose impact will be increasingly felt during the next
several decades. A linkage between brain and behavior is necessary for technology
transfer, because brain mechanisms say how it works, and behavioral functions say
what it is for. Moreover, models that can adapt autonomously in real time to a changing
world are of great importance in solving outstanding technological problems. That is
why, on the technological side, brain/behavior models from BU have been used and
further developed by a number of companies, hospitals, and national labs to process
data from artificial sensors such as synthetic aperture radar, laser radar, multispectral
infrared, night vision, nuclear magnetic resonance, and high altitude photography for
large-scale applications to DoD applications and technology.

Concise Accomplishments
Biological projects include laminar cortical and subcortical models of: (1) 3D vision and
figure-ground separation in response to natural scenes and psychophysical displays; (2)
3D form-motion interactions to generate representations of object direction and speed;
(3) 3D shape-from-texture; (4) learning and recognition of object textures using surface-
based spatial attention and object attention; (5) learning view-invariant 3D object
categories from multiple 2D view categories using active eye movements, surface-
based spatial attention, and object attention; (6) learning to recognize natural scenes
using multiple-scale filters and form-fitting spatial attention; (7) temporary storage of
event sequences in working memory, learning of sequential plans, and sequence
performance during cognitive information processing; (8) coordinated ballistic and
smooth pursuit predictive movements that maximize visual acuity; (9) navigation and
obstacle avoidance using optic flow while eyes/cameras scan the environment; (10)
applications of biological models of normal cognition to understand autism.
Technological projects include: (1) an image processing system to generate visible
chromatic and achromatic scenes under variation illumination conditions; (2) information
fusion by unsupervised discovery of rules and hierarchical knowledge from multi-faceted
data; (3) image analysis by long-range object completion and figure-ground
segmentation to locate watersheds, fault lines, and roads; (4) a color vision model that
directs attention to small objects in complex scenes; (5) a testbed to predict HIV
resistance to antiretroviral therapy; (6) a technology website and image analysis and
classification toolkits; (7) 3D VLSI CMOS implementation of neocortical processing; (8)
silicon neurons and photoreceptors in 3D CMOS technology; (9) wireless architecture
for cortical distributed processing.

Expanded Accomplishments
Selected accomplishments are summarized here:



View-invariant object learning and recognition: Often objects can be recognized
from different viewpoints. How can the brain, or a computer vision system, accomplish
autonomous learning and recognition of an object from multiple viewpoints while
scanning a scene with eye movements? How does the brain avoid the problem of
erroneously classifying parts of different objects together? How are attention and eye
movements intelligently coordinated to facilitate object learning? A neural model
provides a unified mechanistic explanation of how spatial and object attention work
together to search a scene and learn what is in it. The ARTSCAN model of Fazi,
Grossberg, and Mingolla predicts how an object's surface representation generates a
form-fitting distribution of spatial attention, or "attentional shroud." All surface
representations dynamically compete for spatial attention to form a shroud. The winning
shroud persists during active scanning of the object. The shroud maintains sustained
activity of an emerging view-invariant category representation while multiple view-
specific category representations are learned and are linked through associative
learning to the view-invariant object category. The shroud also helps to restrict scanning
eye movements to salient features on the attended object. Object attention plays a role
in controlling and stabilizing the learning of view-specific object categories. Spatial
attention hereby coordinates the deployment of object attention during object category
learning. Shroud collapse releases a reset signal that inhibits the active view-invariant
category in the What cortical processing stream. Then a new shroud, corresponding to
a different object, forms in the Where cortical processing stream, and search using
attention shifts and eye movements continues to learn new objects throughout a scene.
The model mechanistically clarifies basic properties of attention shifts (engage, move,
disengage) and inhibition of return. It simulates human reaction time data about object-
based spatial attention shifts, and learns with 98.1% accuracy and a compression of
430 on a letter database whose letters vary in size, position, and orientation.

Texture segregation by visual cortex: A neural model called dARTEX was developed
by Bhatt, Carpenter, and Grossberg to demonstrate how laminar interactions in the
visual cortex may learn and recognize object texture and form boundaries. The model
unifies five interacting processes: region-based texture classification, contour-based
boundary grouping, surface filling-in, spatial attention, and object attention. The model
shows how form boundaries can determine regions in which surface filling-in occurs;
how surface filling-in interacts with spatial attention to generate a form-fitting distribution
of spatial attention, or attentional shroud; how the strongest shroud can inhibit weaker
shrouds; and how the winning shroud regulates learning of texture categories, and thus
the allocation of object attention. The model can discriminate abutted textures with
blurred boundaries and is sensitive to texture boundary attributes like discontinuities in
orientation and texture flow curvature as well as to relative orientations of texture
elements. The model quantitatively fits the Ben-Shahar and Zucker (2004) human
psychophysical data on orientation-based textures. Surface-based attentional shrouds
improve texture learning and classification: Brodatz texture classification rate varies
from 95.1% to 98.6% with correct attention, and from 74.1% to 75.5% without attention.
Object boundary output of the model in response to photographic images was favorably
compared to computer vision algorithms and human segmentations.



Scene understanding: This project addresses the problem of how humans rapidly
recognize a scene. It clarifies how neural models can capture this biological
competence to achieve state-of-the-art scene classification. The ARTSCENE model of
Grossberg and Huang classifies natural scene photographs by using multiple spatial
scales to efficiently accumulate evidence for gist and texture. ARTSCENE embodies a
coarse-to-fine Texture Size Ranking Principle whereby spatial attention processes
multiple scales of scenic information, ranging from global gist to local properties of
textures. The model can incrementally learn and predict scene identity by gist
information alone and can improve performance through selective attention to scenic
textures of progressively smaller size. ARTSCENE discriminates 4 landscape scene
categories (coast, forest, mountain and countryside) with up to 91.58% correct on a test
set, outperforms alternative models in the literature which use biologically implausible
computations, and outperforms component systems that use either gist or texture
information alone. Model simulations also show that adjacent textures form higher-order
features that are also informative for scene recognition.

Thus, ARTSCENE is part of a larger research program, illustrated as well by the above
three projects, for clarifying how processes of multiple-scale texture filtering and
grouping, spatial attention, fast category learning and recognition, and scanning eye
movements can work together to achieve impressive visually-based learning and
recognition competences.

3D shape-from-texture: In addition to its value in the recognition of natural objects,
texture information may be used to generate representations of object shape that
cannot be easily explained using more traditional 3D modeling approaches. To
complement the analysis of how multiple-scale filters are used for texture recognition, a
LIGHTSHAFT (LIGHTness-and-SHApe-From-Texture) neural model was developed by
Grossberg, Kuhlmann, and Mingolla to clarify how cortical areas V1, V2, and V4 interact
to convert a textured 2D image into a representation of curved 3D shape. Two basic
problems were solved to achieve this: (1) Patterns of spatially discrete 2D texture
elements were transformed into a spatially smooth surface representation of 3D shape.
(2) Changes in the statistical properties of texture elements across space induced the
perceived 3D shape of this surface representation. This is achieved in the model
through multiple-scale filtering of a 2D image, followed by a cooperative-competitive
grouping network that coherently binds texture elements into boundary webs at the
appropriate depths using a scale-to-depth map and a subsequent depth competition
stage. These boundary webs then gate filling-in of surface lightness signals in order to
form a smooth 3D surface percept. The model quantitatively simulates challenging
psychophysical data about perception of prolate ellipsoids (Todd and Akerstrom, 1987,
J. Exp. Psych., 13, 242). In particular, the model represents a high degree of 3D
curvature for a certain class of images, all of whose texture elements have the same
degree of optical compression, in accordance with percepts of human observers.
Simulations of 3D percepts of an elliptical cylinder, a slanted plane, and a photo of a
golf ball are also presented.



Information fusion: Unsupervised discovery of rules and hierarchical knowledge from
multi-faceted data: Carpenter, Amis, Ogas, and Olivera developed new methods that
build upon a novel approach, which was introduced in a prior MURI project, to the
information fusion problem. These methods derive consistent knowledge from sources
that are paradoxically both inconsistent and accurate. A new ARTMAP neural network
system derives hierarchical knowledge structures from nominally inconsistent training
data. The system learns, for example, that disparate pixels map to the output class
"beach"; but, if similar or identical pixels are, at other times, labeled "plage" or "open
space" or "natural", the system learns to associate multiple classes with a given input.
Testbed image examples have shown that the overall pattern of distributed predictions
can reveal a knowledge hierarchy which guides the production of consistently layered
maps of test regions. Even though no inter-class relationships are specified during
training, the system uses distributed activation patterns of learned codes to derive
knowledge of relationship rules, confidence estimates, equivalence classes, and
hierarchical structures.

Image analysis: Long-range object completion and figure-ground segmentation: The
CONFIGR (CONtour Figure GRound) model of Carpenter, Mingolla, and Gaddam is a
computational model based on principles of biological vision that completes sparse and
noisy image figures. Within an integrated vision/recognition system, CONFIGR posits an
initial recognition stage which identifies figure pixels from spatially local input
information. The resulting, and typically incomplete, figure is fed back to the "early
vision" stage for long-range completion via filling-in. The reconstructed image is then re-
presented to the recognition system for global functions such as object recognition. In
the CONFIGR algorithm, the smallest independent image unit is the visible pixel, whose
size defines a computational spatial scale. Once pixel size is fixed, the entire algorithm
is fully determined, with no additional parameter choices. Multi-scale simulations
illustrate the vision/recognition system. Open-source CONFIGR code is available online,
but all examples can be derived analytically, and the design principles applied at each
step are transparent. The model balances filling-in as figure against complementary
filling-in as ground, which blocks spurious figure completions. Lobe computations occur
on a subpixel spatial scale. Originally designed to fill-in missing contours in an
incomplete image such as a dashed line, the same CONFIGR system connects and
segments sparse dots, and unifies occluded objects from pieces locally identified as
figure in the initial recognition stage. The model self-scales its completion distances,
filling-in across gaps of any length, where unimpeded, while limiting connections among
dense image-figure pixel groups that already have intrinsic form. Long-range image
completion promises to play an important role in adaptive processors that reconstruct
images from highly compressed video and still camera images.

Laminar cortical dynamics of Cognitive and motor working memory, sequence
learning and performance: After the brain perceives and recognizes individual objects
and events, it needs to organize them into sequential plans in order to generate
situationally-appropriate actions. In order to do this, it needs to store sequences of
events temporarily in a working memory. How does the brain carry out working memory
storage, categorization, and voluntary performance of event sequences? The LIST



PARSE neural model was developed by Grossberg and Pearson to propose an answer
to this question that unifies the explanation of cognitive, neurophysiological, and
anatomical data from humans and monkeys. It quantitatively simulates human cognitive
data about immediate serial recall and free recall, and monkey neurophysiological data
from the prefrontal cortex obtained during sequential sensory-motor imitation and
planned performance. The model clarifies why both spatial and non-spatial working
memories share the same type of circuit design. It proposes how the laminar circuits of
lateral prefrontal cortex carry out working memory storage of event sequences within
layers 6 and 4, how these event sequences are unitized through learning into list
chunks within layer 2/3, and how these stored sequences can be recalled at variable
rates that are under volitional control by the basal ganglia. These laminar prefrontal
circuits are variations of laminar circuits in the visual cortex that have been used to
explain data about how the brain sees. These examples from visual and prefrontal
cortex illustrate how laminar neocortex can represent both spatial and temporal
information, and open the way towards understanding how other behaviors may be
represented and controlled by variations on a shared laminar neocortical design. When
enough examples of such laminar computing are developed, they will open the way
towards designing families of VLSI chips, all variations of a shared laminar cortical
design, that can be self-consistently integrated into an autonomous controller of multiple
modalities of intelligence.

Coordinating saccadic and smooth pursuit eye movements during visual tracking
of unpredictably moving targets: As illustrated by the above projects on visual
learning and recognition, oculomotor tracking of moving objects is an important
component of visually based cognition, planning, and decision-making. The ARTSCAN
and model, in particular, demonstrates how eye movements may be used to learn view-
invariant object categories, but it does not explain how the brain generates these eye
movements. The brain has a fovea with high visual acuity that must be moved efficiently
across a scene to see and understand it well. Ballistic or saccadic eye movements, by
themselves, would greatly diminish the amount of time that the fovea fixates objects of
interest. The brain intelligently coordinates saccades with predictive smooth pursuit
movements to maximize the amount of time that a moving target is foveated. In
particular, the saccadic and smooth pursuit systems interact to often choose the same
target, and to maximize its visibility through time. How does the brain coordinate these
two types of eye movements to track objects that move in unpredictable directions and
speeds? How do multiple brain regions interact, including frontal cortical areas, to
decide the choice of a target among several competing moving stimuli? How can these
insights be used to develop more effective machine tracking methods: Saccadic eye
movements rapidly foveate peripheral visual or auditory targets, and smooth pursuit eye
movements keep the fovea pointed toward an attended moving target. Analyses of
tracking data in monkeys and humans reveal systematic deviations from predictions of
the simplest model of saccade-pursuit interactions, which would use no interactions
other than common target selection and recruitment of shared motoneurons. Instead,
saccadic and smooth pursuit movements cooperate to cancel errors of gaze position
and velocity, and thus to maximize target visibility through time. Moreover, saccades are
calibrated to correctly foveate a target despite its continued motion during the saccade?



A neural model has been developed by Bullock, Grossberg, and Srihasam to provide
answers to such questions. The modeled interactions encompass motion processing
areas MT, MST, FPA, DLPN and NRTP; saccade planning and execution areas FEF
and SC; the saccadic generator in the brain stem; and the cerebellum. Simulations
illustrate the model's ability to functionally explain and quantitatively simulate
anatomical, neurophysiological and behavioral data about saccade-pursuit target
tracking.

Visually-guided steering, obstacle avoidance, and route selection: Tracking of
moving targets often occurs while a human, or mobile robot, navigates an environment.
How is optic flow information used to steer towards a goal while avoiding obstacles? A
Steering, Tracking, And Route Selection (STARS) neural model was developed by
Elder, Grossberg, and Mingolla to explain how humans can approach a goal object on
foot while steering around obstacles to avoid collisions in a cluttered environment. The
model uses optic flow from a 3D virtual reality environment to determine the position of
objects based on motion discontinuities, and computes heading direction, or the
direction of self-motion, from global optic flow. The cortical representation of heading
interacts with the representations of a goal and obstacles in such a way that the goal
acts as an attractor of heading, while obstacles act as repellers. This result clarifies
behavioral data that demonstrate such an attractor/repeller scheme. In addition, the
model maintains fixation on the goal object by generating smooth pursuit eye
movements, whose finer control is clarified by the model of Bullock, Grossberg, and
Srihasam. Eye rotations can distort the optic flow field, complicating heading
perception, and the model uses extraretinal signals to correct for this distortion and
accurately represent heading. The model explains how motion processing mechanisms
in cortical areas MT, MST, and VIP can be used to guide steering. The model
quantitatively simulates human psychophysical data about visually-guided steering,
obstacle avoidance, and route selection. The model architecture captures the
attractor/repeller dynamics of steering behavior, and clarifies how heading and eye
movements work together during complex steering tasks.

A modular architecture for implementing cortical processing through forward,
feedback, and lateral connections: A CMOS cortical processor chip has been
fabricated in MIT Lincoln Labs 3D 0.18 um CMOS technology for a 64 x 64 processor
that incorporates 1 million transistors in 1.5 x 1.5 mm of silicon. 10 3D CMOS dies were
received in May 2006. A printed circuit board has been designed to test the chips.
Preliminary results are encouraging.
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